

		DIN	EN Nr.	UNS (ASTM)	AISI	LMSA
Désignation	NiBe2	-	-	N03360	-	A800

Chemical composition

Ni*	Be	Ti	Cu	Fe	Si
Balance	1.85 - 2.05	0.40 - 0.60	≤ 0.25	≤ 0.20	≤ 0.20

Values (Weight %). In order to achieve maximum homogeneity and consistent quality, the actual manufacturing tolerances are tighter and more precisely than the composition indicated. *Nickel plus additions > 99.5%

Main technical properties and features

The alloy 360, nickel-beryllium combines unique high mechanical and physical performances properties. The advantages include among others, a high ultimate tensile strength up to more than approximately 2000 N/mm², an excellent formability as well as a very high resistance to thermal stress relaxation up to temperatures exceeding 300 °C. This alloy is recommended in all applications requiring particularly high spring properties at high temperatures. We find applications for the alloy 360, in the connector industry at temperatures of use which can reach 300°C and sometimes 350 °C, where all the copper alloys cannot be used at a higher temperature than 200 °C. Due to its excellent resistance to temperature fluctuations, this alloy is also used for the production of components that are subjected to elevated temperatures for short intervals (up to 380 °C). This alloy also maintains good spring properties in these conditions. The fatigue strength is excellent; it can reach more than 700 N/mm² for 10⁶ (reverse bending R=-1), which is more than two times higher than that of CuBe2, alloy 25.

The precipitation hardening of the alloy 360, is possible. During this treatment an increase of density appears (approximately 0.5 %), which involves a dimensional shrinking of the material of about 0.2 %. A decrease of the cold formability is induced by such a heat treatment, contrary to the mechanical resistance, which can rise from 300 to 500 N/mm², according to the temper and heat treatment condition.

The surface preparation of the NiBe2 remains simple, by mechanical or chemical processes.

Typical uses

Electronic components exposed to high temperatures and requiring good spring properties. Manufacture of thermostats, bellows, burn-in connectors and sockets, casings, diaphragms and membranes, etc.

Typical manufacturing range

		Thickness (mm)	Width (mm)	Length (mm)
Rolled products	Strip in coils ^[1]	0.010 - 2.000	1.5 - 200.0	-
	Strip as sheets [1]	0.010 - 1.500	10.0 - 200.0	100 - 3000

^[1] Not all our production possibilities are presented here. Other dimensions or product forms available upon request. Some combinations of thicknesses and widths are not possible.

Mechanical properties of strips

Temper		Heat Treatment	Rp _{0.2} (N/mm ²)	R _m (N/mm²)	A _{50mm} (%)	Hardness HV	R/t (90°) G / B ^[1]
А	Soft annealed	-	270 - 490	650 - 900	> 30	100 - 200	0/0
1⁄4 H	1/4 hard	-	440 - 860	750 - 1040	> 15	150 - 295	0/0
1⁄2 H	1/2 hard	-	790 - 1180	900 - 1210	> 4	180 - 385	1.2 / 1.2
Н	hard	-	1030 - 1310	1030 - 1310	> 1	220 - 490	2.0 / 2.0

Mill-hardened tempers	Heat Treatment	Rp _{0.2} (N/mm ²)	R _m (N/mm²)	A _{50mm} (%)	Hardness HV	R/t (90°) G / B ^[1]
MH2		680 - 870	1060 - 1240	> 14	-	0/0
MH4	Mill-hardened	820 - 1070	1240 - 1420	> 12	-	0.5 / 0.5
MH6	tempers. No further heat	1030 - 1210	1370 - 1550	> 10	-	1.0 / 1.2
MH8		1170 - 1420	1510 - 1690	> 9	-	1.2 / 1.6
MH10	required.	1370 - 1550	1650 - 1860	> 8	-	1.5 / 2.2
MH12	roquirou.	1510 - 1700	1790 - 2000	> 8	-	2.0 / 3.0

[1] Minimum bend radius at 90°. R = radius, t = strip thickness, G = "Good way", perpendicular to rolling direction and B =" Bad way", parallel to rolling direction.

After age hardening (by the customer)

Те	emper	Heat Treatment	Rp _{0.2} (N/mm ²)	R _m (N/mm²)	A _{50mm} (%)	Hardness HV
А	Annealed + aged	3h at 500°C	> 1030	> 1480	> 12	> 340
1⁄4 H	1/4 hard + aged	3h at 500°C	1400 - 1520	1650 - 1850	10 - 3	500 - 600
½ H	1/2 hard + aged	2h at 500°C	1450 - 1550	1700 - 1800	10 - 3	500 - 570
Н	Hard + aged	2h at 500°C	> 1590	> 1860	> 8	> 440

[2] The age hardening is achieved by a simple heat treatment of 1.5h to 3h at a typical temperature of 500°C. In order to obtain specific mechanical properties, the heat treatment can be made apart from these conditions. A protective atmosphere is not required but is recommended for a clean and shiny surface.

Alloy 360

Evolution of HV and R_m of alloy 360, NiBe2 as function of temperature (3 hours).

Strain-hardening curve.

R_m, Rp_{0.2} (N/mm²) and A₅₀ (%).

Initial temper: soft annealed.

Evolution of HV and R_m of alloy 360, NiBe2 according to the processing temperature (3 hours).

Initial temper: cold worked

Physical properties

Modulus of elasticity	kN/mm ²	195, 210 [1]
Poisson ratio		0.30
Density	g/cm ³	8.25, 8.36 [1]
Melting point / Melting range	°C	1195 - 1325
Linear dilatation coefficient (20-300°C)	10 ^{-6.} / ⁰C	14.5
Thermal conductivity at 20°C	W/m °K	48
Electrical resistivity	μΩcm	43, 28.7 [1]
Electrical conductivity	MS/m	2, 4 ^[1]
Electrical conductivity	% IACS	4, 6 ^[1]
Magnetic properties		Ferromagnetic

^[1] Values before and after hardening, respectively.

Tolerances (strip and foil)

	Thickness (mm)		EN St	EN Standard		Lamineries MATTHEY		
Thickness			10140	10258	LMSA	LMSA	LMSA	
	≥	<	Precision	Precision	n Standard	Precision	Extreme	
	-	0.025	-	-	-	-	± 0.001	
	0.025	0.050	-	-	± 0.003	± 0.002	± 0.0015	
The table shown is an outline of our typical	0.050	0.065	-	± 0.003	± 0.003	± 0.0025	± 0.002	
thickness tolerances available. They are	0.065	0.100	-	± 0.004	± 0.004	± 0.0035	± 0.003	
tighter than industry standards.	0.100	0.125	± 0.005	± 0.006	± 0.005	± 0.004	± 0.003	
ç ,	0.125	0.150	± 0.005	± 0.006	± 0.005	± 0.005	± 0.004	
Our "LMSA Precision" and "LMSA	0.150	0.250	± 0.010	± 0.008	± 0.008	± 0.006	± 0.004	
Extreme" tolerances are available upon	0.250	0.300	± 0.010	± 0.009	± 0.009	± 0.007	± 0.005	
request.	0.300	0.400	± 0.010	± 0.010	± 0.010	± 0.007	± 0.005	
	0.400	0.500	± 0.015	± 0.012	± 0.012	± 0.008	± 0.006	
	0.500	0.600	± 0.015	± 0.014	± 0.014	± 0.010	± 0.007	
	0.600	0.800	± 0.015	± 0.015	± 0.015	± 0.010	± 0.007	
	0.800	1.000	± 0.015	± 0.018	± 0.018	± 0.012	± 0.009	
	1.000	1.200	± 0.020	± 0.020	± 0.020	± 0.015	± 0.012	
	1.200	1.250	± 0.020	± 0.020	± 0.020	± 0.015	± 0.012	
	1.250	1.500	± 0.020	± 0.020	± 0.020	± 0.015	± 0.014	
Width	Our width	tolerances	s "Standard	' is +0.2, -	0.0 (or ± 0.1 r	nm upon reque	st). They are	
	upon requ	iest.						
Camber	Wic	lth (mm)			Camber ma	x. (mm/m)		
		()		LMSA Sta	Indard	LMSA E	xtreme	
	>	≤	≤ 0	.5 mm	> 0.5 mm	≤ 0.5 mm	> 0.5 mm	
Our tolerance "LMSA Standard" respects	3	6		12	-	6	-	
the EN Standard 1654 (Length of	6	10		8	10	4	5	
measurement 1000 mm).	10	20		4	6	2	3	
Other tolerances upon request.	20	250		2	3	1	1.5	
Surface	Special su	urface qual	ities upon re	equest				
Flatness	Special requirement on the longitudinal or transversal flatness upon request							

The information in this document is informative only. Information provided does not constitute any contractual commitment or warranty of any kind.

© 2022 Lamineries MATTHEY, branch of Notz Metall AG

Rue Montagu 38 CH 2520 La Neuveville P. +41 (0)32 752 32 32