		EN	UNS (ASTM)	AISI	LMSA
Designation	NiCr19Fe18Nb5Mo3Ti1AlCo	2.4668	N07718	-	B635

Chemical composition

Ni (+Co)	Cr	Fe	Ti	Nb + Ta	Мо	Со	AI
50.0 - 55.0	17.0 - 21.0	Reste	0.65 - 1.15	4.50 - 5.50	2.80 - 3.30	≤ 1.00	0.20 - 0.80
Р	В	С	Cu	Si	Mn	S	-
≤ 0.015	≤ 0.006	≤ 0.08	≤ 0.30	≤ 0.35	≤ 0.35	≤ 0.015	-

Values (Weight %). In order to achieve maximum homogeneity and consistent quality, the actual manufacturing tolerances are tighter and more precisely than the composition indicated.

Main technical properties and features

Common Trade Names: Inconel 718[®], Nicrofer[®] 5219, Alvac[®] 718, Haynes[®] 718, Altemp[®] 718

Alloy 718 is an precipitation hardening Ni–Fe–Cr–Nb–Mo–Ti–Al alloy designed to combine excellent strength with good processing characteristics in the annealed condition. Alloy 718 is covered by the following specifications: AMS 5596/5597 (sheet, strip and plate) and NACE MR-01-75 (oil field equipment). While limited to applications below 650 °C (1200 °F), it is significantly stronger at these lower temperatures than materials such as the Alloy X-750. It is also easier to weld and is less susceptible to the strain age cracking problems (occurs during the post-weld heat treatment of restrained welds in certain alloys) common for γ ' strengthened materials.

Alloy 718 has very good forming and welding characteristics. It can be welded by a variety of processes, including gas tungsten arc, gas metal arc, electron beam, and resistance welding. High heat input processes are not recommended. The hot working temperature range for the alloy is approximately 985 - 1150 °C (1700 - 2100 °F). The alloy has very good ductility in the annealed condition and thus, may also be formed by cold working. All hot or cold-worked parts should be annealed and rapidly cooled in order to restore the best balance of properties. Alloy 718 has good ductility and may be readily formed by all conventional methods. Because the alloy presents higher resistance than regular steel, it requires more powerful equipment to accomplish forming. Heavy-duty lubricants should be used during cold forming. It is essential to thoroughly clean the parts of all traces of lubricant after forming as embrittlement of the alloy may occur at high temperatures if lubricant is left on. The alloy has also excellent properties and ductility at cryogenic temperatures.

If the material is to be formed or welded, it is typically purchased in the annealed condition. The alloy is normally solution heattreated at 925 to 1010 °C (1700 to 1850 °F) and rapidly cooled for optimal properties. The material is then fabricated in its most malleable condition. After fabrication, it can be heat treated as required per the applicable specification. Alloy 718 is hardened by the precipitation of secondary phases (e.g. γ' and γ'') into the metal matrix. The precipitation of these Ni-(AI, Ti, Nb) phases is induced by heat treatment in the temperature range of 595 to 815 °C (1100 to 1500 °F). For this metallurgical transformation to properly take place, the aging constituents (AI, Ti, Nb) must be dissolved in the matrix; if they are precipitated as some other phase or are combined in some other form, they will not precipitate correctly and the full strength of the alloy with not be achieved. Therefore, the material must first be solution heat-treated. Following solution heat treatment, the alloy is normally age-hardened by a two steps treatment consisting of : maintaining at 720 °C (1325 °F) for 8 hours, furnace cooling to 620 °C (1150 °F), holding for an additional 8 hours, and then air cooling.

Typical uses

The ease and economy in which Alloy 718 can be fabricated, combined with good tensile, fatigue, creep, and rupture strength, have resulted in its use in a wide range of applications. The use of Alloy 718 is suitable in both aircraft turbine engines and land-based turbines. Other applications include rings, casings, components for liquid fueled rockets, cryogenic tankage, fasteners and instrumentation parts, pressure membranes and many types of formed sheet metal components.

Typical manufacturing range

		Thickness (mm)	Width (mm)	Length (mm)
Rolled products	Strip in coils ^[1]	0.015 - 2.000	1.5 - 200.0	-
	Strip as sheets [1]	0.015 - 1.500	10.0 - 200.0	100 - 3000

^[1] Not all our production possibilities are presented here. Other dimensions or product forms available upon request. Some combinations of thicknesses and widths are not possible.

Mechanical properties of strips

Temper	R _m (N/mm²)	Rp _{0.2} (N/mm²)	A _{50mm} (%)	Hardness HV
annealed	800 - 1000	400 - 750	25 min.	210 - 320
½ hard	1000 - 1200	700 min.	5 min.	320 - 380
hard	1200 min.	900 min.	-	370 min.

After suitable heat treatment, see AMS-5597, high stress-rupture strength and low creep rates under high stresses at temperature up to 650°C can be achieved. Values of tensile strength higher than 1200 N/mm² (typical value 1250 N/mm²) and elongation higher than 15% can be obtained by age hardening of annealed delivered material

Physical properties

Modulus of elasticity	kN/mm ²	200 (191 at 200°C, 179 at 400°C, 167 at 600°C)
Poisson ratio		0.32
Density	g/cm ³	8.19 (annealed), 8.22 (annealed and heat treated)
Melting point / Melting range	°C	1260 - 1340
Linear dilatation coefficient	10 ⁻⁶ ·/ ⁰C	12.8 (15.5 from 20 to 700°C)
Thermal conductivity at 20°C	W/m °K	11.4 (17.5 at 400°C, 22.2 at 700°C)
Electrical resistivity	μΩcm	132
Electrical conductivity	MS/m	0.80
Electrical conductivity	% IACS	1.25
Specific heat at 20°C	J/(kg. K)	435
Magnetic properties		Nonmagnetic (slightly diamagnetic)
Permeability		μ = 1.0013 (annealed), μ = 1.0011 (annealed and heat treated)

Tolerances (strip and foil)

	Thickness (mm)			Lamineries MATTHEY					
Thickness				LMS	SA	L	MSA		LMSA
	≥	<		Stand	lard	Pre	ecision		Extreme
	-	0.025		-			-		± 0.001
	0.025	0.050	0.050)03 ±		0.002		± 0.0015
The table shown is an outline of our	0.050	0.065	0.065		04	± 0.003			± 0.002
typical thickness tolerances available.	0.065	0.100		± 0.0	06	±	0.004		± 0.003
They are tighter than industry	0.100	0.125		± 0.008 ±).006 ±		± 0.003	
standards.	0.125	0.150		± 0.0	800	±			± 0.004
	0.150	0.250		± 0.0	± 0.010 ± 0				± 0.004
Our "LMSA Precision" and "LMSA	0.250	0.300		± 0.012 ±		±	0.008		± 0.005
Extreme" tolerances are available upon request.	0.300	0.400		± 0.0)12	±	0.009		± 0.005
lequest.	0.400	0.500		± 0.0)15	±	0.010		± 0.006
	0.500	0.600		± 0.020 ±		0.012		± 0.007	
	0.600	0.800	0.800		± 0.020 ±		0.014		± 0.007
	0.800	1.000		± 0.025 ±		0.015		± 0.009	
	1.000	1.200		± 0.0	25	±	0.018		± 0.012
	1.200	1.250		± 0.030		± 0.020		± 0.012	
	1.250	1.500		± 0.035		± 0.025		± 0.014	
Width	Our width tolerances "Standard" is $+0.2$, -0.0 (or ± 0.1 mm upon request). They are available for slit widths < 125 mm and thicknesses < 1.00 mm. Special tolerances upon request.								
Camber	Width (r	nm)		Camber max. (mm/m)					
	· · · ·			LMSA standard			LMSA extreme		xtreme
	>	≤	≤ ().5 mm	> 0.5	mm	≤ 0.5 m	m	> 0.5 mm
Our tolerance "LMSA Standard"	3	6		12	-		6		-
respects the EN Standard 1654 (Length	6	10		8	10		4		5
of measurement 1000 mm).	10	20		4	6		2		3
Other tolerances upon request.	20	250		2	3		1		1.5
Surface	Special surface qualities upon request								
Flatness	Special requirement on the longitudinal or transversal flatness upon request								

© 2022 Lamineries MATTHEY, branch of Notz Metall AG

The information in this document is informative only. Information provided does not constitute any contractual commitment or warranty of any kind.