

Stainless Steel

1.4310.4

		EN	UNS (ASTM)	AISI	LMSA
Designation	X10CrNi18-8	1.4310	S30100	301	D101

Chemical composition

Fe	С	Cr	Ni	Si	Mn	Р	S	Мо	N
Bal.	0.09 - 0.12	16.0 - 17.0	6.3 - 6.8	≤ 2.0	≤ 2.0	≤ 0.045	≤ 0.045	≤ 0.80	≤ 0.11

Values (Weight %). In order to achieve maximum homogeneity and consistent quality, the actual manufacturing tolerances are tighter and more precisely than the composition indicated.

Typical chemical composition for Lamineries MATTHEY stainless steel 1.4310.4.

Main technical properties and features

The tensile strengths of austenitic stainless steels are average but can be increased considerably, for certain types, by cold rolling. The 1.4310, X10CrNi18-8, is the most widely used stainless steel for the production of springs. It reaches very high mechanical strength through cold working. Its austenitic structure is rather unstable and its corrosion resistance is lower than, for example, that of the 1.4435, 316L, or of the 1.4301, X5CrNiMo 18-10. An increase of the mechanical strength of the 1.4310, X10CrNi18-8, by more than 250 N/mm² can be achieved by tempering at 280 to 420 °C after having been highly cold worked. This tempering is interesting in that it also increases the fatigue strength limit.

Lamineries MATTHEY SA proposes a special version of the 1.4310: the 1.4310.4. Its chemical composition has been adapted in order to increase the reaction to work hardening (Ni content between 6.4 and 6.6 %). 1.4310.4 is also specially cast in order to avoid unwanted inclusions. Its austenitic structure is unstable and a high mechanical strength can be reached, using a significantly weaker rate of cold deformation than is the case for the conventional 1.4310. The stainless 1.4310.4 also offers an improved fatigue strength limit as well as a higher increase of the tensile strength after tempering than with the conventional 1.4310. These properties make the 1.4310.4 highly suitable for demanding spring applications such as the manufacture of snap domes.

Typical uses

Often used for the manufacture of springs and other products requiring a good fatigue resistance such as switches, watch and clock components, snap domes, etc.

Typical manufacturing range

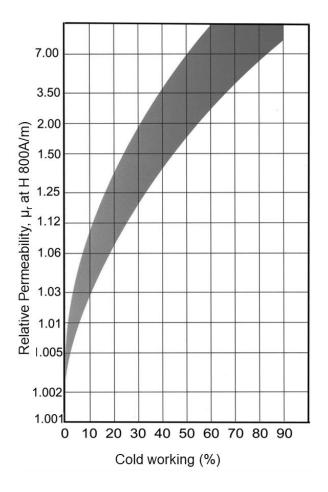
		Thickness (mm)	Width (mm)	Length (mm)
Rolled products	Strip in coils [1]	0.010 - 0.400	1.5 - 200.0	-
	Strip as sheets [1]	0.010 - 0.400	10.0 - 200.0	100 - 3000

^[1] Not all our production possibilities are presented here. Other dimensions or product forms available upon request. Some combinations of thicknesses and widths are not possible.

Mechanical properties of strips

Temper		Rp ₀₂ (N/mm ²)	R_m (N/mm 2)	Hardness HV
C700 [1]	soft	-	700 - 1000	170 - 250
C1000 [1]	1/4 hard	-	1000 - 1300	310 - 410
C1300 [1]	½ hard	200 min.	1300 - 1500	390 - 480
C1500 [1]	hard	370 min.	1500 - 1800	410 - 520
C1700 [1]	Extra hard	490 min.	1700 - 2000	450 - 630
C1700 [1]	spring	550 min.	1900 min.	580 min.

These tempers do not correspond exactly to the EN 10151 standard and are only indicative.


Stainless Steel

1.4310.4

Physical properties

Modulus of elasticity	kN/mm ²	195 [1]
Poisson ratio		0.29
Density	g/cm ³	7.90
Melting point	°C	1410
Linear dilatation coefficient	10 ⁻⁶ ⋅/ °C	16.8
Thermal conductivity at 20°C	W/m °K	14.7
Electrical resistivity	μΩcm	70
Electrical conductivity	MS/m	1.4
Specific heat at 20°C	J/(kg. K)	460
Magnetic properties		Amagnetic in soft temper (μ = 1.0002 - 1.004) [2]

- The Modulus of elasticity of 1.4310.4 varies slightly with the amount of cold working and depends, therefore, on the temper as well as the direction of measurement, longitudinal or transverse to the rolling direction. In the longitudinal direction, the Young's Modulus decreases from approx. 205 kN/mm² in the annealed temper to 185 kN/mm² for a cold working of about 40% (Rm approx. 1400-1600 N/mm²) and then increases gradually with further cold working. In all cases, the tempering process will increase the Young's Modulus and decrease its tendency to change as a function of cold work.
- The magnetic permeability increases very quickly with cold working and mechanical resistance. For the 1.4310.4, the austenite is very unstable and a significant amount can rapidly change to α martensite and the alloy will become ferromagnetic (μ_r reaches 6 for a cold working of 50%, R_m approx. 1600 N/mm²).

Stainless Steel

1.4310.4

Tolerances (strip and foil)

Thickness	Thickn	ess (mm)		Lamineries MATTHEY						
				LMS	LMSA		LMSA		MSA	
	≥	<		Standard		Precision		E	ktreme	
	-	0.025	,	-		-		±	0.001	
	0.025	0.050		± 0.0	03	± 0.002		± 0.0015		
The table shown is an outline of our	0.050	0.065)	± 0.004		± 0.003		±	0.002	
typical thickness tolerances available.	0.065	0.100		± 0.006		± 0.004		± 0.003		
They are tighter than industry	0.100	0.125)	± 0.008		± 0.006		± 0.003		
standards.	0.125	0.150		± 0.008		± 0.006		±	0.004	
	0.150	0.250		± 0.0	10	± 0.0	800	±	0.004	
Our "LMSA Precision" and "LMSA	0.250	0.300		± 0.012		± 0.008		±	0.005	
Extreme" tolerances are available upon	0.300	0.400		± 0.0	12	± 0.0	009	±	0.005	
request.	0.400	0.500		± 0.0	15	± 0.0	010	±	0.006	
	0.500	0.600		± 0.0	20	± 0.012		± 0.007		
	0.600	0.800		± 0.020		± 0.014		±	0.007	
	0.800	1.000		± 0.025		± 0.015		±	0.009	
	1.000	1.200		± 0.0	.025 :		0.018		0.012	
	1.200	1.250		± 0.030		± 0.020		±	0.012	
	1.250	1.500		± 0.035		± 0.025		± 0.014		
Width	Our width tole available for supon request.									
Camber	Width (mm)		Camber max. (mm/m)						
				LMSA standard		LMSA e		extr	extreme	
	>	> ≤		0.5 mm > 0.5 mm		n ≤ 0.5 mm			> 0.5 mm	
Our tolerance "LMSA Standard"	3	3 6 6 10		12 -		6			-	
respects the EN Standard 1654 (Length	6			8 10		0 4			5	
of measurement 1000 mm).	10	20		4 6			2		3	
Other tolerances upon request.	20	250		2 3		3 1			1.5	
Surface	Special surface qualities upon request									
Flatness	Special requirement on the longitudinal or transversal flatness upon request									